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Abstract: A two-phase smoothed particle hydrodynamics (SPH) mixture model to simulate water-soil interactions is presented. In this
model, each phase of the mixture satisfies its own conservation equations of mass and momentum. The water is considered as a Newtonian
fluid and the soil is modeled as an elastic-perfectly plastic material. Drucker-Prager criterion is employed to test the yielding of the soil and an
associated flow rule is adopted to describe the soil behavior after yielding. Interactions between water and soil are modeled by the viscous
drag force according to Darcy’s law. With this mixture model, it is possible to investigate the temporal and spatial evolutions of the volume
fractions of both phases. This study first examines the proposed SPH mixture model for two single-phase flows, i.e., water dam break and
sand column collapse, respectively. The drag force model is also tested using the problem of flow in porous media. Then its application to the
problem of soil excavation by high-velocity impinging water jets is illustrated. The flow pattern, profile of excavation hole, evolutions of
pressure, volume fraction, and plastic shear strain during the impinging process are obtained and found to be qualitatively good compared
with previous experimental observations and numerical simulations. Effects of hydraulic conductivity and initial volume fractions of water
and soil on the excavation are revealed. Numerical simulation shows that the proposed method is robust and efficient, and can be applied to
water-soil mixture flow problems in hydraulic engineering and geotechniques, especially to those cases where volume fractions play
important roles in the mixture dynamics. DOI: 10.1061/(ASCE)HY.1943-7900.0001163. © 2016 American Society of Civil Engineers.

Author keywords: Water-soil interactions; Two-phase mixture model; Water jetting; Numerical simulation; Smoothed particle hydrody-
namics (SPH) method.

Introduction

Water-soil mixture flows occur widely in different fields. Typical ex-
amples include debris and mud flows (e.g., Bagnold 1954; Savage
and Hutter 1989; Iverson and Denlinger 2001; Pitman and Le 2005;
Pudasaini 2012); scour and erosion downstream the dam spillways or
headcuts (e.g., Aderibigbe and Rajaratnam 1996; Mazurek et al.
2001); erosion of the channel bed or quay wall by the propellers
of passing ships (Yeh et al. 2009); underwater soil excavation and
trenching by means of high-velocity water jets (e.g., Perng and
Capart 2008), to name a few. In these flows, water-soil interactions
play an important role in the mixture dynamics.

During the last few decades, researchers have developed three
kinds of water-soil interaction models: single phase models, quasi-
single phase models, and multiphase mixture models. Single phase
models, represented by viscoplastic model of Bagnold (1954) and

Coulomb plastic model of Savage and Hutter (1989), treat the
water-soil mixture as a single non-Newtonian fluid material. Be-
cause of the single phase hypothesis, such models are not able to
describe the complex interactions between water and soil. Quasi-
single phase models, as in Iverson and Denlinger (2001), consider
the role of the pore water, but assume equal velocities for the con-
stituents, which is inconsistent with the real situation.

In two-phase mixture models, as in Pitman and Le (2005) and
Pudasaini (2012), each constituent satisfies its own mass and mo-
mentum conservation equations. The interactive coupling between
the two constituents is modeled by the linear or quadratic viscous
drag force. One of the advantages of the two-phase mixture models
over the previous ones is that the spatial and temporal distributions
of the volume fraction of each constituent can be investigated.

Although intensive studies have been conducted, water-soil in-
teractions are still open questions due to the turbidity of the current
and the complex behaviors of the soil. In water-soil mixture flows,
soil undergoes large deformation that is difficult to treat using grid-
based methods. Smoothed particle method (SPH), originally pro-
posed by Gingold and Monaghan (1977) and Lucy (1977), is an
appealing tool in dealing with large deformation problems, because
of its Lagrangian and mesh free features. Bui et al. (2007) pio-
neered the numerical simulation of water-soil interactions using
SPH method. They proposed a two-phase model, in which the
water is regarded as a Newtonian fluid and the soil as an elas-
tic-perfectly plastic material. Interactions between water and soil
are modeled by the Darcy’s law and pore water pressure. With
the aid of this novel numerical method, some interesting phenom-
ena of water-soil interactions have been revealed. Recently, Guo
et al. (2013) revisited the same problem. However, in their model,
water and soil are not allowed to merge with each other. Thus their
model is in fact a two-phase immiscible flow model. There are
some other works on numerical simulation of water-soil interaction
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problems based on two-fluid SPH approaches. For example, Manenti
et al. (2012) applied an SPH-based numerical model to analyze the
coupled fluid-sediment dynamics induced by the rapid water dis-
charge in an artificial reservoir. In their study, noncohesive sediments
at the bottom are modeled in two different ways, i.e., at rest or
eroded, according to the definition of a strength threshold. Both
the liquid phase and the eroded granular particles are considered
as weakly compressible fluids. Ulrich et al. (2013) studied the harbor
bed erosion induced by the starting propeller of a large full-scale
container vessel. The soil phase is treated as a viscous material with
a variable viscosity. The models employed by both Manenti
et al. (2012) and Ulrich et al. (2013) do not belong to the category
of mixture models.

Because in saturated soil, each constituent (water and soil)
occupies only part of the volume space in the macroscopic mixture
modeling, the dynamics of the mixture will be influenced by the vol-
ume fraction of each phase. For instance, the drag force is related to
the porosity, which is in fact the volume fraction of the water phase in
saturated soil. None of the previously mentioned SPH simulations
considered the effects of volume fractions on the dynamics of the
mixture. In this paper, an SPH approximation of two-phase mixture
model is formulated and applied to the problem of soil excavation by
high-velocity water jets. In this model, there are two kinds of
particles, i.e., water particles and soil particles, which are initially
superimposed and then moving at different velocities according to
their ownmass andmomentum equations. Volume fractions for water
and soil particles are taken as field variables that should be deter-
mined together with other fundamental variables, such as density,
stress, and velocity. With this mixture model, it is possible to inves-
tigate the temporal and spatial evolutions of the volume fractions of
both phases. Effects of hydraulic conductivity and initial volume
fractions of water and soil on the excavation are investigated, which
helps to reveal the mechanisms of soil failure under the impingement
of high velocity water jets.

In the following sections, mathematical formulation of the mix-
ture theory is first presented, followed by the numerical implemen-
tation using SPH method. The proposed SPH two-phase mixture
model is then validated by some typical problems such as water
dam break, granular column collapse, and flow through porous
media. Finally, this is applied to the problem of soil excavation
by high-velocity water jets. Flow pattern, excavation profile, pres-
sure, volume fraction, and plastic shear strain distribution at
representative times during the impinging process are obtained
and compared with previous experimental observations and numeri-
cal simulations to show the effectiveness of the proposed approach,
with special focus on the capability to investigate effects of
hydraulic conductivity and initial volume fractions on the mixture
dynamics. Conclusions and remarks are made in the last section.

Mathematical Formulation

Water-Soil Mixture Model

Consider the saturated water-soil mixture flows. With the mixture
theory (e.g., Drew 1983; Wang and Hutter 1999a, b), the mass con-
servation equations are given by

∂tð ~ρsϕsÞ þ ∇ · ð ~ρsϕsvsÞ ¼ 0 ð1Þ

∂tð ~ρfϕfÞ þ ∇ · ð ~ρfϕfvfÞ ¼ 0 ð2Þ
where subscripts s and f = soil and water, respectively; the density
~ρ = true density of each constituent; ϕ = volume fraction; v = veloc-
ity with components vα and vβ; ∂t = partial derivative with respect

to time t; and the nabla symbol ∇ = vector differential operator.
Here, true density ~ρf of water is the density of the interstitial water
(also called pore water) in the mixture. True density ~ρs of soil is the
density of the particles that make up the soil, in contrast to the bulk
density, which measures the average density of a large volume of
the soil in a specific medium (usually air). True density of soil is
thus defined as the mass per unit volume, not including the pore
spaces in between the grains.

The volume fraction ϕ of a constituent at a given point and
instant is defined as the percentage of volume occupied by this
constituent within the local volume filled by water and soil at
the same instant, and satisfies the following saturation relationship

ϕf ¼ 1 − ϕs ð3Þ

Conservation equations for momentum are

∂tð ~ρsϕsvsÞ þ∇ · ð ~ρsϕsvsvsÞ ¼ ∇ · σs þ ~ρsϕsgþ f s ð4Þ

∂tð ~ρfϕfvfÞ þ ∇ · ð ~ρfϕfvfvfÞ ¼ ∇ · σf þ ~ρfϕfg − f s ð5Þ

where σ̂s and σ̂f = partial stresses of the soil and the water, respec-
tively; g = gravitational acceleration; and f s = interaction forces
exerted on the soil phase by the water phase.

In momentum Eqs. (4) and (5), the form of the partial stress
tensors σ̂s and σ̂f should be specified. For soil, assume that
σ̂s ¼ ϕsσs, where σs is the stress tensor of the dry soil. For water,
the relationship σ̂f ¼ −pfI þ ϕfτf is assumed, where pf and τf are
the pore pressure and the shear stress of the water, respectively. The
interaction force f s is assumed to be composed of two parts: the
buoyancy force −ϕs∇pf and the viscous drag force f d. With these
assumptions, the momentum equations can now be rewritten as

∂tð ~ρsϕsvsÞ þ ∇ · ð ~ρsϕsvsvsÞ ¼ ∇ · ðϕsσsÞ þ ~ρsϕsg − ϕs∇pf þ f d
ð6Þ

∂tð ~ρfϕfvfÞþ∇ · ð ~ρfϕfvfvfÞ¼−ϕf∇pfþ∇ · ðϕfτfÞþ ~ρfϕfg− f d

ð7Þ

where the authors have made use of the saturation relationship in
Eq. (4). Defining partial densities as ρs ¼ ~ρsϕs, ρf ¼ ~ρfϕf , mass
conservation Eqs. (1) and (2) become

Dsρs
Dt

¼ −ρs∇ · vs ð8Þ

Dfρf
Dt

¼ −ρf∇ · vf ð9Þ

where Dιð·Þ=Dt = material time derivative with respect to vι
(ι ¼ s; f denoting soil and fluid, respectively). Momentum Eqs. (6)
and (7) become

∂tðρsvsÞ þ∇ · ðρsvsvsÞ ¼ ∇ · ðϕsσsÞ − ϕs∇pf þ ρsgþ f d ð10Þ

∂tðρfvfÞ þ∇ · ðρfvfvfÞ ¼ −ϕf∇pf þ ∇ · ðϕfτfÞ þ ρfg − f d
ð11Þ

Making use of the mass conservation Eqs. (8) and (9), the mo-
mentum equations can also be written as

ρs
Dsvs
Dt

¼ ∇ · ðϕsσsÞ − ϕs∇pf þ f d þ ρsg ð12Þ

© ASCE 04016032-2 J. Hydraul. Eng.

 J. Hydraul. Eng., 2016, 142(10): 04016032 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Sh
an

gh
ai

 J
ia

ot
on

g 
U

ni
ve

rs
ity

 o
n 

11
/2

1/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



ρf
Dfvf
Dt

¼ −ϕf∇pf þ ∇ · ðϕfτfÞ − f d þ ρfg ð13Þ

Here, the governing Eqs. (8), (9), (12) and (13) are rewritten in
Lagrangian form, facilitating numerical approximation using SPH
method, which is based on Lagrangian formalism.

In this study, the true density ~ρs of the soil is assumed to be
constant. Thus the mass equation for soil becomes the governing
equation for the volume fraction ϕs of soil. The volume fraction ϕf
of water is calculated from the complementary condition in Eq. (4).
In Eqs. (4), (8), (9), (12), and (13), there are six unknowns: ϕs, ϕf ,
ρf , vs, vf , and pf . To close the system, it is necessary to specify the
constitutive relations for the interaction forces and the stress
tensors, which will be addressed in the next section.

Constitutive Model for Water

To simplify the representation, the authors make the convention
that all variables appearing in this subsection are related to water.
In the current study, the water phase is considered as a Newtonian
fluid. The deviatoric stress tensor ταβ of the water is given by

ταβ ¼ μεαβ ð14Þ

where μ = dynamic viscosity of the water, and εαβ is defined as

εαβ ¼ ∂vβ
∂xα þ ∂vα

∂xβ − 2

3

�∂vγ
∂xγ

�
δαβ ð15Þ

where δαβ = Kronecker delta symbol; and γ = dummy index appli-
cable to summation convention. For the waterjet impact problem
investigated in this paper, the flow is dominated by the inertia, thus
the laminar flow assumption is adopted for this study. For turbu-
lence modeling in SPH, the readers may refer to Violeau and
Issa (2007).

The relation between density and pore pressure, i.e., equation of
state for water is taken as

pf ¼ B

��
~ρ
~ρ0

�
χ − 1

�
ð16Þ

where ~ρ0 = reference true density of water; χ = constant normally
set to seven; and B = problem dependent parameter that sets a limit
for the maximum change of density. According to compressible
flow theory, the sound speed of water is

c2 ¼ ∂pf

∂ ~ρ
����
~ρ¼ ~ρ0

¼ Bχ
~ρ0

ð17Þ

The density variation δ ~ρ≡ ~ρ − ~ρ0 is related to the Mach number
M by Monaghan (1994)

δ ~ρ
~ρ0

∼M2 ¼
�
V
c

�
2

ð18Þ

where V = typical velocity of the fluid. If B is chosen such that the
density fluctuation of water is 1%, the result is c2 ¼ 100V2, which
when substituted into Eq. (17) gives

B ¼ 100V2 ~ρ0=χ ð19Þ

The equation of state Eq. (16) can also be expressed in terms of
partial densities as

pf ¼ B

��
~ρϕ
~ρ0ϕ

�
χ − 1

�
¼ B

��
ρ
ρ0

�
χ − 1

�
ð20Þ

where ρ0 = reference partial density.

Constitutive Model for Soil

In this subsection, all variables are related to soil. Bui et al. (2008)
and Bui and Fukagawa (2013) proposed an incremental plasticity
model to describe the large deformation behavior of soil. This
model is adopted here and depicted as follows.

The soil is considered as an elastic-perfectly plastic material.
With the incremental plasticity theory, the constitutive relation
of an elastic-perfectly plastic material is expressed as

σ̇αβ ¼ 2 Gėαβ þ Kϵ̇γγδαβ

− λ̇

��
K − 2 G

3

� ∂H
∂σγγ δ

αβ þ 2 G
∂H
∂σαβ

�
ð21Þ

where σ̇αβ = stress rate tensor; and ϵ̇αβ = total strain rate tensor
defined as

ϵ̇αβ ¼ 1

2

�∂vα
∂xβ þ ∂vβ

∂xα
�

ð22Þ

G = shear modulus; K = bulk modulus; G and K are related to
the Young’s modulus E and the Poisson’s ratio ν through

K ¼ E
3ð1 − 2νÞ ; G ¼ E

2ð1þ νÞ ð23Þ

ėαβ ¼ ϵ̇αβ − 1=3ðϵ̇γγδαβÞ = deviatoric strain rate tensor; λ̇ = rate
of change of the plastic multiplier λ, which is dependent on the state
of stress and load history; andH = plastic potential function needed
in the flow rule. The flow rule defines the relationship between the
next increment of the plastic strain and the present state of stress for
a yield element subjected to further loading, i.e.

ϵ̇αβp ¼ λ̇
∂H
∂σαβ ð24Þ

In constitutive Eq. (21), λ̇ is determined by the so-called con-
sistency condition, which states that the stress state is always on the
yield surface FðσαβÞ ¼ 0 during the plastic deformation. This con-
dition can be written in the following form:

dF ¼ ∂F
∂σαβ dσ

αβ ¼ ∂F
∂σαβ σ̇

αβdt ¼ 0 ð25Þ

Substituting Eq. (21) into Eq. (25), the general formulation for λ̇
is obtained as

λ̇ ¼ 2Gϵ̇αβ ∂F
∂σαβ þ ðK − 2G

3
Þϵ̇γγ ∂F

∂σmm

2G ∂F
∂σmn

∂H
∂σmn þ ðK − 2G

3
Þ ∂F
∂σmm

∂H
∂σnn

ð26Þ

where summation convention is adopted for repeated indices. If the
potential function and the yielding function coincide with each
other (i.e., F ¼ H), the flow rule is called the associated type, oth-
erwise it is the nonassociated type. Two yield criteria, namely the
Mohr-Coulomb (MC) and the Drucker-Prager (DP) yield criteria
are commonly used in soil mechanics. According to Fourtakas et al.
(2013), the DP yield criterion shows improvements over the MC
criterion within the shear layer of the sediment. Thus, in this paper,
the following Drucker-Prager yield criterion is chosen for soil

FðI1; J2Þ ¼
ffiffiffiffiffi
J2

p
þ αθI1 − kc ð27Þ

© ASCE 04016032-3 J. Hydraul. Eng.
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where I1 = first invariant of the total stress tensor; and J2 = second
invariant of the deviatoric stress tensor ταβ. I1 and J2 are defined as

I1 ¼ σxx þ σyy þ σzz; J2 ¼
1

2
ταβταβ ð28Þ

αθ and kc are constants that can be related to the cohesion and
the friction angle θ of the Mohr-Coulomb failure criterion. In this
paper, cohesion is considered as zero, thus kc ¼ 0. For plane strain
problem, αθ is determined by

αθ ¼
tan θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12tan2θ
p ð29Þ

In this paper, the plastic potential function H is chosen to be
equal to the yield function F, resulting the associated flow rule.
Substituting F and H into Eq. (21), the constitutive equation
becomes

σ̇αβ ¼ 2 Gėαβ þ Kϵ̇γγδαβ − λ̇½3αθKδαβ þG=
ffiffiffiffiffi
J2

p
ταβ � ð30Þ

which is equivalent to

ṗs ¼ −Kϵ̇γγ þ 3λ̇αθK ð31Þ

τ̇ αβ ¼ 2Gėαβ − λ̇G=
ffiffiffiffiffi
J2

p
ταβ ð32Þ

where ps ¼ −σγγ=3 = isotropic part of tensor σαβ; while ταβ = the
deviatoric part of σαβ . However, the previous relation for τ̇ αβ does
not satisfy the so-called material frame indifference (MFI) princi-
ple. In order to satisfy MFI, the Jaumann rate is adopted with the
following constitutive equation

τ̇ αβ − ταγω̇βγ − τγβω̇αγ ¼ 2Gėαβ − λ̇G=
ffiffiffiffiffi
J2

p
ταβ ð33Þ

or equivalently

τ̇ αβ ¼ ταγω̇βγ þ τγβω̇αγ þ 2Gėαβ − λ̇G=
ffiffiffiffiffi
J2

p
ταβ ð34Þ

where the rotational rate tensor ω̇αβ is defined as

ω̇αβ ¼ 1

2

�∂vα
∂xβ − ∂vβ

∂xα
�

ð35Þ

With the associated flow rule, the rate of change of plastic multi-
plier λ̇ is calculated by

λ̇ ¼ 3αθKϵ̇γγ þ ðG= ffiffiffiffiffi
J2

p Þταβϵ̇αβ
9α2

θK þG
ð36Þ

Drag Force Model

In this paper, the viscous drag force f d is assumed to be linear
with respect to the velocity difference between the two phases,
i.e., f d ¼ Cdðvf − vsÞ, where the coefficient Cd can be derived
from Darcy’s law

Cd ¼ ϕfγw=k ð37Þ

where k = hydraulic conductivity with the dimensions of velocity
[LT−1]; γw ¼ ρfg = specific weight expressed with the partial den-
sity ρf of water; and k = constant depending not only on the type of
soil but also on the type of fluid (dynamic viscosity μ) percolating
through it. Values of hydraulic conductivity can be obtained from
empirical formulas, laboratory experiments, or field tests (Nield
and Bejan 2006).

From the previous governing equations and drag force calcula-
tion, it is shown that volume fractions affect the dynamics of the
soil-water coupled flows. This is the core modeling concept for
interpenetrating disperse flow, i.e., mixture flow. With the mixture
theory, it is possible to investigate the effects of the volume frac-
tions on the mixture dynamics.

SPH Implementation

Basic Idea of SPH Method

A brief introduction to SPH method is presented in this section for
completeness. Detail can be found in Liu and Liu (2003), Mona-
ghan (2005), and Violeau (2012). The foundation of SPH method is
interpolation theory. The interpolation process is based on the
following integral representation of a field function fðxÞ:

hfðxÞi ¼
Z
Ω
fðx 0ÞWðx − x 0; hÞdΩ ð38Þ

whereW = kernel or smoothing function; and h = smoothing length
defining the influence domain Ω of W. The smoothing function
satisfies the normalization conditionZ

Ω
Wðx − x 0; hÞdΩ ¼ 1 ð39Þ

the delta condition

lim
h→0

Wðx − x 0; hÞ ¼ δðx − x 0Þ ð40Þ

and the compact condition

Wðx − x 0; hÞ ¼ 0; for jx − x 0j > κh ð41Þ
where κ is a constant. In Eq. (40), the Dirac delta function δðxÞ in
an n-dimensional Euclidean space Rn is defined by

δðxÞ ¼
�∞; x ¼ 0;

0; x ≠ 0.
; with

Z
Rn

δðxÞdx ¼ 1 ð42Þ

A number of smoothing functions have been proposed in the
literature. Among others, the Wendland kernel function (Wendland
1995) has been proven to be accurate and efficient. This smoothing
function is employed in the current study and can be expressed as

WðR; hÞ ¼ αd ×

� ð1 − R=2Þ4ð2Rþ 1Þ; 0 ≤ R ≤ 2;

0; R ≥ 2
ð43Þ

where R ¼ jx − x 0j=h; and αd ¼ 7=ð4πh2Þ for two dimen-
sional space.

In SPH method, the computational domain is discretized into a
finite number of particles (Fig. 1). These particles carry material
properties such as mass, density, velocity, and stress, and movewith
the material velocity according to the governing equations. The
continuous integral representation of the field variable fðxÞ in
Eq. (38) can then be approximated by summation over the neigh-
boring particles in the support domain, as

hfðxiÞi ≈
X
j

mj

ρj
fðxjÞWij ð44Þ

whereWij ¼ Wðjxi − xjj; hÞ; mj and ρj = mass and density of par-
ticle j at position xj, respectively; the fraction mj=ρj gives the vol-
ume ΔVj of particle j, j ¼ 1,2; : : : ;N; and N = number of
particles in the support domain of particle i.

© ASCE 04016032-4 J. Hydraul. Eng.
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The continuous integral approximation for the spatial derivative
of the function fðxÞ is

h∇x · fðxÞi ¼ −
Z
Ω
fðx 0Þ · ∇x 0Wðx − x 0; hÞdΩ

¼
Z
Ω
fðx 0Þ · ∇xWðx − x 0; hÞdΩ ð45Þ

Here the symbol ∇ · can be gradient or divergence, according to
whether the function fðxÞ is a scalar function or a vector function,
respectively. It is shown that the differential operation on function
fðxÞ has been transformed to the differential operation on the
smoothing function W. In the derivation of Eq. (45), the authors
have made use of the compact support condition in Eq. (41)
and assumed that the integration point x is remote from the domain
boundaries. In terms of discretized domain, the particle approxima-
tion for the spatial derivative of the function fðxiÞ is

h∇ · fðxiÞi ¼
X
j

mj

ρj
fðxjÞ · ∇iWij ð46Þ

where

∇iWij ¼
xi − xj
rij

∂Wij

∂rij ¼ rij
rij

∂Wij

∂rij ð47Þ

There are some alternative SPH formulations for the derivatives
of function fðxÞ. For instance, making use of the following iden-
tities

ρ∇ · fðxÞ ¼ ∇ · ½ρfðxÞ − fðxÞ · ∇ρ ð48Þ

ρ−1∇ · fðxÞ ¼ ∇ ·

�
fðxÞ
ρ

�
þ fðxÞ

ρ2
· ∇ρ ð49Þ

the derivatives of fðxÞ can also be written as

h∇ · fðxiÞi ¼
1

ρi

X
j

mj½fðxjÞ − fðxiÞ� · ∇iWij ð50Þ

h∇ · fðxiÞi ¼ ρi
X
j

mj

�
fðxiÞ
ρ2i

þ fðxjÞ
ρ2j

�
· ∇iWij ð51Þ

Detailed derivation of SPH method are given in Liu and
Liu (2003).

SPH Model for Water-Soil Mixture

Monaghan and Kocharyan (1995) and Monaghan (1997) made the
first attempt to deal with two-phase flows using SPH. Although
their idea is originally proposed for dusty gas problem, it can also
be extended to water-soil interaction problems. In this section, an
SPH approximation of two-phase mixture model for water-soil in-
teraction problems is formulated. In this model, there are two kinds
of particles, i.e., water particles and soil particles, which are ini-
tially superimposed and then moving at different velocities accord-
ing to their own mass and momentum equations. For simplicity, the
quantities for the water particles are identified by subscripts a and
b, and for the soil particles by i and j. Applying the SPH particle
approximations in Eqs. (50) and (51) to the gradients, the continuity
equations in the SPH formulation will be

Dfρa
Dt

¼
X
b

mbðvαa − vαbÞ
∂Wab

∂xαa þ δfhacf
X
b

ψα
ab
mb

ρb

∂Wab

∂xαa ð52Þ

Dsρi
Dt

¼
X
j

mjðvαi − vαj Þ
∂Wij

∂xαi þ δshics
X
b

ψα
ij

mj

ρj

∂Wij

∂xαi ð53Þ

where ha, hi = smoothing lengths of particles a and i, respectively;
cf and cs = reference sound speeds of water and soil, respectively;
δf and δs = constants normally set to 0.1; and ψij is

ψij ¼ 2ðρi − ρjÞ
rij

jrijj2
ð54Þ

where rij ¼ xi − xj. ψαβ can be deduced analogously. The last
terms in Eqs. (52) and (53) are added to avoid the density fluc-
tuation, according to the so-called δ-SPH method, recently devel-
oped by Antuono et al. (2010) and Marrone et al. (2011a, b). In this
study, the smoothing length is assumed as constant, thus the result
is ha ¼ hi ¼ h for all particles.

The SPH approximation for the momentum equation of soil is

Dsvαi
Dt

¼ −X
j

mj

�
piϕi

ρ2i
þ pjϕj

ρ2j
þΠij

� ∂Wij

∂xαi

þ
X
j

mj

�
ταβi ϕi

ρ2i
þ ταβj ϕj

ρ2j

� ∂Wij

∂xβi
−ϕi

X
a

ma
pa

ρiρa

∂Wia

∂xαi

þ
XN
a

ma
fαia
ρiρa

Wia þ gαi ð55Þ

where pa = pore water pressure of water particles calculated by
Eq. (20); and pi = pressure of soil particles calculated according
to Eq. (31). In order to construct an SPH approximation for
momentum equation of water, which conserve linear and angular
momentum, it is necessary to write the pressure term in Eq. (13) in
the form (Monaghan and Kocharyan 1995; Monaghan 1997)

−ϕf∇pf ¼ −∇ðpfϕfÞ − pf∇ϕs ð56Þ

where use has been made of ∇ϕf ¼ −∇ϕs. Thus momentum
Eq. (13) can be recast to

ρf
Dfvf
Dt

¼ −∇ðpfϕfÞ − pf∇ϕs þ ∇ · ðϕfτfÞ − f d þ ρfg ð57Þ

Fig. 1. Particle approximation in SPH method
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The SPH approximation of the previous equation is

Dfvαa
Dt

¼ −X
b

mb

�
paϕa

ρ2a
þ pbϕb

ρ2b
þ Πab

� ∂Wab

∂xαa

þ
X
b

mb

�
ταβa ϕa

ρ2a
þ ταβb ϕb

ρ2b

� ∂Wab

∂xβa −X
i

mi
paϕi

ρaρi

∂Wia

∂xαa
−X

i

mi
fαia
ρiρa

Wia þ gαa

ð58Þ

In Eqs. (55) and (58), Πij and Πab are artificial viscosity terms
added to prevent unphysical penetration of particles. Πij is defined
as (Monaghan 1994)

Πij ¼
8<
:

−η1c̄ijϕij þ η2ϕ2
ij

ρ̄ij
; vij · rij < 0;

0; vij · rij ≥ 0

ð59Þ

in which

ϕij ¼
h̄ijvij · rij
jrijj2 þ ϵh̄2ij

; c̄ij ¼
1

2
ðci þ cjÞ ð60Þ

h̄ij ¼
1

2
ðhi þ hjÞ; ρ̄ij ¼

1

2
ðρi þ ρjÞ ð61Þ

where ϵ = small constant usually set to 0.01. Πab can be defined
analogously by replacing i; j with a; b. Note that the internal forces
(including pressure forces, shear stresses, and artificial viscous
forces) occur in symmetric form ensuring Newton’s third law,
which is the conservation of the total momentum of an isolated
system. For water, the two constants η1; η2 take values of 0.01
and 1, respectively, while for soil they are set to 0.1 and 1, respec-
tively. Artificial viscosity should be included with care, because
large artificial viscosity will lead to unphysical results. For exam-
ple, the liquid flows much more slowly if large artificial viscosity is
added. In some validation cases presented in this paper, such as the
cases of water dam break and sand column collapse, the compu-
tation is still stable even without artificial viscosity. Discussions
about artificial viscosity can be found, for example, in Colagrossi
and Landrini (2003).

The deviatoric stress ταβa of water particles is calculated accord-
ing to Eq. (14), where the SPH approximation of the deviatoric
strain rate tensor εαβa for water particle a is

εαβa ¼
X
b

mb

ρb
vβba

∂Wab

∂xαa þ
X
b

mb

ρb
vαba

∂Wab

∂xβa
−
�
2

3

X
b

mb

ρb
vba · ∇aWab

�
δαβ ð62Þ

where vba ¼ vb − va.
The discretized forms of the constitutive relations in Eqs. (31)

and (34) for soil particle i are

ṗi ¼ −Kϵ̇γγi þ 3λ̇iαθK ð63Þ

τ̇ αβi ¼ ταγi ω̇βγ
i þ τγβi ω̇αγ

i þ 2Gėαβi − λ̇iG=
ffiffiffiffiffiffi
J2i

p
ταβi ð64Þ

respectively, where the strain rate tensor ϵ̇αβi and the rotation rate
tensor ω̇αβ

i are approximated as

ϵ̇αβi ¼ 1

2

X
j

�
mj

ρj
vβji

∂Wij

∂xαi þmj

ρj
vαji

∂Wij

∂xβi

�
ð65Þ

ω̇αβ
i ¼ 1

2

X
j

�
mj

ρj
vβji

∂Wij

∂xαi −mj

ρj
vαji

∂Wij

∂xβi

�
ð66Þ

according to Eqs. (22) and (35), respectively.
Calculation of the volume fraction for soil particle i is straight-

forward: once ρi has been found, ϕi can be calculated from ρi ¼
~ρsϕi because ~ρs is constant. Volume fraction ϕa for a water particle
a is calculated from the relation from Eq. (4) in the form

ϕa ¼ 1 −X
j

mj

ρj
ϕjWaj ð67Þ

where the summation gives the soil volume fraction ϕf at the
position of water particle a. Eq. (67) can be written as

ϕa ¼ 1 − 1

~ρs

X
j

mjWaj ð68Þ

so that, recalling ~ρs is constant

Dfϕa

Dt
¼ − 1

~ρs

X
j

mjvaj ·
∂Waj

∂xa ð69Þ

Eq. (69) leads to a more stable calculation, thus in the current
study, the authors use Eq. (69) rather than Eq. (68).

Plasticity Treatment

The constitutive models of soil, e.g., Eqs. (63) and (64), contain
terms related with the plastic multiplier. If the stress state is inside
or on the yielding surface there is no need to compute these terms
because the material is still in the elastic regime. This term only
needs to be computed when the stress state is outside of the yield
surface. In computational plasticity (e.g., de Souza Neto et al.
2011), this is done by the so-called return mapping algorithm,
which normally consists of two steps to proceed: (1) the elastic trial
step, and (2) the plastic corrector step. In the current study, an
explicit treatment of the return mapping algorithm is employed.
To do so, calculate the yield function FðI1; J2Þ and the rate of
change of the plastic multiplier λ̇ using the stress tensor at the cur-
rent time step tn. When FðI1; J2Þ ≥ 0 and λ̇ > 0, the particle is as-
sumed to undergo plastic loading, then the plastic part of the stress
rate tensor is added. Otherwise, the plastic part is set to zero.

Explicit integration of the stress rate tensor may lead to a stress
state that lies outside the yield surface when yielding occurs.
An explicit correction method proposed by Chen and Mizuno
(1990), and recently applied by Bui et al. (2008), is employed
to scale the stresses exceeding the yield strength back to the yield
surface. This method involves two consequent steps, i.e., the
tension cracking treatment and the stress-scaling back procedure.
Tension cracking corresponds to the case where the stress state
of soil moves beyond the apex of the yield surface. In this case,
the particle is in tension, which is not allowed for noncohesive soil.
To remove this tension cracking, the stress state is directly shifted
to that at the apex. However, it should be pointed out that this treat-
ment is valid only for noncohesive soil. For cohesive soil, an ar-
tificial stress method proposed by Monaghan (2000) and Gray
et al. (2001) should be applied.

If the stress moves to above the Drucker-Pager surface (a line in
2D space), the stress at the end of step has to be reduced to return

© ASCE 04016032-6 J. Hydraul. Eng.
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the stress state back to the yield surface. This is called the
stress-scaling back procedure. In this procedure, the deviatoric
shear stress components are reduced in proportion to a scaling fac-
tor, whereas the hydrostatic stress component I1 remains un-
changed. The scaling factor is determined such that the new
stress state is on the yield surface. For more details, refer to Bui
et al. (2008).

Boundary Treatment and Time Stepping

In all the simulations, rigid wall boundaries are treated by the dy-
namic particle method (e.g., Crespo et al. 2007; Gomez-Gesteira
et al. 2012). With this method, the boundary is replaced by several
layers of virtual particles carrying mass, density, velocity, volume
fraction, and stress as the real particles in the domain. Virtual
particles are also involved in the calculation. Field variables of
virtual particles, except velocity and position, evolve with time.
The virtual particles produce repulsive force against real particles,
thus preventing these particles from nonphysically penetrating the
boundary. Recently, a more elegant method, namely the unified
semianalytical wall boundary treatment method (USAM), was pro-
posed by Ferrand et al. (2013). By solving a dynamic equation for
the renormalizing factor, they significantly improved traditional
wall treatment in SPH, for pressure forces, wall friction, and tur-
bulence conditions. In fact, the idea of semianalytical treatment of
solid boundary can also be found in an earlier paper by Monaco
et al. (2011), where the solid boundary intersected with the support
domain of a particle is replaced by a virtual fluid region with a
suitable distribution of velocity, density, and pressure. With this
method, the domain integrals over the virtual fluid region can
be computed analytically. Because the flows in the current study
are dominated by inertia rather than wall effects, the authors adopt
the dynamic particle method to treat the boundaries for simplicity.
Application of the more elegant boundary treatment method
USAM will be a future topic.

When a water particle moves close to the free surface, the kernel
function will be truncated, and the SPH approximation is no longer
accurate, leading to the so-called problem of boundary deficiency.
In this paper, the water density is calculated by the continuity
Eq. (52). To overcome the problem of boundary deficiency, the au-
thors reinitialize the density field every some time steps, according
to the following summation density approach (see also Liu and Liu
2003; Gomez-Gesteira et al. 2012 for reference)

ρa ¼
P

b mbWabP
bðmb

ρb
ÞWab

ð70Þ

In this paper, time stepping is performed using second order
Leap-Frog algorithm. In this method, field variables X, including
velocity (v), density (ρ), soil pressure (ps), stress tensor (σ), and
water volume fraction ( ) are offset from particle position (x) by
half a time step as shown in the following equations:

Xnþ1=2 ¼ Xn−1=2 þΔt ·

�
DX
Dt

�
n

ð71Þ

xnþ1 ¼ xn þΔt · vnþ1=2 ð72Þ

where Δt = time step size; n = current time step tn;
and nþ 1 = advanced time step (tn þΔt). While the soil pressure
ps in Eq. (63) is updated using Eq. (71), the pore water pressure pf
should be updated according to the equation of state of Eq. (20).

Note that Leap-Frog only computes velocities and stresses at
half steps. However, to compute the acceleration ðDX=DtÞn at time

tn, it is necessary to obtain the velocity vn and stress ταβn at integer
time tn, as seen in Eqs. (55), (58), and (64). Here, when computing
the half-step velocity vn−1=2 and stress ταβn−1=2, it is necessary to si-
multaneously compute an approximate integer step velocity vn and
stress ταβn by taking another half step using the acceleration
ðDX=DtÞn−1. This has been tested with satisfactory results and
is used in the simulations.

Because the stress states for soil are computed at each half time
step and integer time step, the tension cracking treatment and the
stress-scaling back procedure should be performed at each half and
integer time step, ensuring that the stress states are inside or on the
yield surface.

The time step size is controlled by the so-called Courant-
Fredrich-Levy (CFL) condition

Δt ≤ Ccourminðh=cs; h=cfÞ ð73Þ

where Ccour = Courant coefficient; h = smoothing length
of particles; and cf and cs = sound speed of water and soil, respec-
tively. The Courant coefficient is chosen to be Ccour ¼ 0.3.
Theoretically speaking, time step size is also affected by the physi-
cal viscosity, as shown for example in Monaco et al. (2011). How-
ever, in the current study, the viscosity stability condition is
automatically satisfied by Eq. (73) due to the fact that the flows
investigated in this paper are in convective dominant regime.

Initialization of the physical variables (e.g., pressure, density,
and stresses) is worth mentioning. In the present SPH mixture
model, the water is considered as weakly compressible, thus the
initial density of the water should be adjusted according to the hy-
drostatic pressure of an incompressible fluid and the of state
Eq. (20) of water, that is, the initial density of water particles is
calculated by

ρjt¼0 ¼ ρ0ðpf=Bþ 1Þ1=χ ð74Þ

where pf ¼ ~ρ0gz = hydrostatic pressure of an incompressible fluid;
and z = pressure head.

The static stress state in soil is very complex considering the
plastic behavior of the material. In the current study, the initial nor-
mal stress in static soil is calculated by

σxx ¼ σyy ¼ K0σzz ð75Þ

where σzz = vertical stress; σxx and σyy = lateral (horizontal) stress;
and K0 = so-called coefficient of lateral earth pressure, which is
related to the Poisson’s ratio by

K0 ¼
ν

1 − ν
ð76Þ

Shear stress σxy is always set to zero for static soil.
To get the mass of each particle, the computational domain is

discretized into cells with equal size. The massmi of a soil particle i
is calculated by

mi ¼ ~ρiδViϕi ¼ ρiδVi ð77Þ

where ~ρi and ρi = true density and partial density, respectively; and
δVi = initial volume of cell i. The mass of a soil particle a can be
calculated analogously. The mass of each particle is assigned at the
beginning of the computation and remains invariant during the time
stepping. In the computation, the smoothing length is set to be con-
stant, being equal to the initial particle spacing.
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Simulations and Results Analysis

In this section, the SPH models are validated for single-phase flows
using two standard examples, i.e., problems of water dam break and
soil column collapse. The model for drag force between phases is
validated using the flow in a porous medium. Then the proposed
SPH mixture model is applied to the problem of soil excavation by
high-velocity water jets.

Water Dam Break

First, the water dam break problem is employed to validate the SPH
model for the water phase. In this example, the collapse of a 2D
water column in a tank is simulated. This problem was investigated
by Koshizuka and Oka (1996) both experimentally and numerically
in a 2D domain. It became a classic example to test the validation of
the Lagrangian formulation in fluid flow (Colagrossi and Landrini
2003; Idelsohn et al. 2004). The initial water column is 0.1 m wide
and 0.2 m high, and the tank is 0.4 m wide and 0.2 m high. At
t ¼ 0, the water column collapses and particles move to the right.
In the simulation, the water column is represented by a total of
12,800 water particles. The initial particle distance is 0.00125 m.
Parameters used in the computation for this case is listed in
Table 1. The virtual sound speed in water is taken as cf ¼
25 m=s, which corresponds to a typical water velocity of 2.5 m=s.
Hereafter, for all the computations presented in this paper, the
smoothing length h is taken as the same as the initial inter-particle
distance.

Water particles predicted by the numerical model at
representative times are shown in Fig. 2. It is shown that the flow
fields, including particle position and pressure distribution, are well
predicted. During the water front evolution, before the downstream
wall impact, the pressure field is almost consistent with shallow
water wave condition, which is clearly seen in this figure. Fig. 3
indicates the comparison of the time variation for the position of the
leading edge with experiments and computations from Koshizuka
and Oka (1996). The relations between the normalized time
tð2g=LÞ1=2 (L is the initial width of the water column) and position
of the leading edge X ¼ x=L are in good agreement. From the final
part of the curves in this figure, the estimate of the typical velocity

Table 1. Parameters Used in the Computation for the Water Dam Break
Problem

Parameter Symbol Value

Reference density of water ~ρf0 1,000 kg=m3

Dynamic viscosity of water μ 1.0 × 10−3 Pa · s
Virtual sound speed in water cf 25 m=s
Time step size Δt 1.0 × 10−5 s
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Fig. 2. Pressure distribution for the water dam break problem
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Fig. 3. Relationship between the nondimensional leading edge and the
time after water column collapses
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V of the water front is approximately dx=dt ¼ 1.2
ffiffiffiffiffiffiffiffi
2gL

p ≈
1.69 m=s. Considering the acceleration of water particles when im-
pact onto the downstream wall, the choice for the typical velocity V
of water particles to be 2.5 m=s is reasonable.

To quantify the error made with the SPH model, a convergence
study is performed where the results obtained with the finite vol-
ume method (FVM) is taken as a reference. FVM is a mesh-based
Eulerian method with the capability of capturing water free surface
using the volume of fluid (VOF) technique (Hirt and Nichols 1981).
Numerical simulation of the water dam break problem using VOF
technique is shown in Fig. 4. The L2 error is calculated based on the
values of the horizontal velocity field u obtained by the SPH
method and by FVM at all particles positions, through (Leroy et al.
2014)

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

VT

X
a

Va

�
uspha − urefa

umax

�2
s

ð78Þ

where VT ¼ P
a Va = total volume of all the fluid particles; usph =

velocity at time t ¼ 0.2 s obtained by the SPH method; uref = veloc-
ity at the same instant obtained with VOF; and umax ¼ 2.5 m=s is
the typical velocity of the flow. Four particle resolutions, with the
initial particle spacing h being equal to 0.01 m, 0.005 m,
0.0025 m, and 0.00125 m, respectively, are investigated. The results
of the convergence study are shown in Fig. 5, where it appears that
the order of convergence of the weakly compressible SPH (WCSPH)
method is less than one, which is consistent with Leroy et al. (2014).

Sand Column Collapse

Now the numerical model is validated for soil by applying it to
another problem, namely the sand column collapse. This problem
has been previously studied by many researchers (e.g., Bui et al.
2008; Chen and Qiu 2012; López et al. 2012). In this simulation,
a sand column 0.2 m wide and 0.1 m high collapses at t ¼ 0.
Material constants for soil are listed in Table 2. In the simulation,
a total of 12,800 soil particles are used, with an initial particle spac-
ing of 0.00125 m. The time step size is set to Δt ¼ 5 × 10−6 s.

Particle positions predicted by this numerical model at
representative times is shown in Fig. 6. In this figure, the accumu-
lated plastic shear strain indicated by color is computed by
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Fig. 4. Numerical simulation of water dam break problem using VOF method
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Fig. 5. Convergence study for the case of water dam break problem

Table 2. Parameters Used in the Computation for the Case of Sand
Column Collapse

Property Symbol Value

Density of soil ~ρs 2,650 kg=m3

Young’s modulus of soil E 0.84 MPa
Bulk modulus K 0.7 MPa
Poisson’s ration of soil ν 0.3
Internal friction angle of soil θ 19.8°
Cohesion of soil kc 0
Sound speed in soil cs 20 m=s
Time step size Δt 5 × 10−6 s
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ϵxyp ¼
Z

t

0

ϵ̇xyp dt ¼
Z

t

0

λ̇
∂H
∂σxy dt ¼

Z
t

0

λ̇
τ xy

2
ffiffiffiffiffi
J2

p dt ð79Þ

where the time integration is also performed at half time steps as in
Eq. (71). It is shown that plastic deformation mainly happen at the
side slope region. An undisturbed region is observed after the col-
lapse, which is consistent with the experimental observations of
Lube et al. (2004, 2005). Fig. 7 compares the numerical results
of final soil surface and failure line with experimental and computa-
tional results obtained by Bui et al. (2008). It indicates that the SPH
model developed is capable of simulating the process of sand
column collapse with satisfactory accuracy.

Flow through Porous Media

The drag force model is validated between different phases using
the problem of flow in porous medium. As shown in Fig. 8, water
flows in a U-tube from left to right through the soil sample under
gravity. The geometry of the U-tube and the initial water level dif-
ference are shown in the figure. This problem has been previously
studied by many researchers, e.g., Huang et al. (2013), with differ-
ent geometries. In this test, the material parameters are: porosity
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Fig. 6. Accumulated plastic shear strain εxyp for sand column collapse
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Fig. 8. Flow through porous media
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0.45; hydraulic conductivity 0.01 m=s; density of water
1,000 m3=s; and density of soil 2,650 m3=s. Numerical settings
are: particle resolution 0.05 m; number of boundary particles
1,158; number of fluid particles 3,108; number of soil particles
567; and simulation duration 200s.

According to Darcy’s law, the water level difference δZ at time t
can be calculated by

δZ ¼ δZ0

e
2 kðt−t0Þ

L

ð80Þ

where t0 = initial time; δZ0 = initial water level difference;
k = hydraulic conductivity; and L = length of the soil sample. Darcy
velocity in the soil can be calculated by ð1=2ÞðdδZ=dtÞ. The theo-
retically calculated water level differences are shown in Fig. 9,
along with the water level differences from the SPH simulation.
Fig. 10 compares the horizontal Darcy velocity in the soil. The

numerical errors compared with the analytical results are also
shown in these figures. It is shown that numerical results agree well
with the theoretical solutions.

Saturated Soil Excavation by Water Jets

Now the proposed SPH mixture model is applied to the problem of
saturated soil excavation by high-velocity water jets. This problem
has been studied by Bui et al. (2007) and more recently by Guo
et al. (2013). However, in this section this problem is revisited using
the mixture theory in order to reveal the effects of volume fraction
on the mixture dynamics.

As seen in Fig. 11, the rectangular tank containing the soil stra-
tum is 0.5 m in width and 0.2 m in height. The nozzle is in the
middle above the tank with an impinging height of 0.02 m from
the soil surface. The width of the nozzle is 0.02 m. The jetting
velocity is 25 m=s. Material properties for soil and water are listed
in Table 3. The sound speed cs in soil is set to 215 m=s according to
cs ≈

ffiffiffiffiffiffiffiffiffiffiffi
K= ~ρs

p
, where K is the bulk modulus of soil. The virtual

sound speed cf in water is 250 m=s. The initial values for the vol-
ume fractions of water and soil are set to ϕf0 ¼ ϕs0 ¼ 0.5. Jetting
from the nozzle is pure water with ϕf0 ¼ 1.

The water and soil materials are discretized by 4,000 particles
for each phase, of which 3,150 are real particles and 850 are virtual
particles for implementing the rigid wall boundary condition. The
initial particle spacing is 0.005 m. The water jet is generated using
water particles with the same initial spacing. Time step size Δt is
set to 5.0 × 10−6 s.
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Fig. 9. Difference in water level for the U-tube flow problem
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Fig. 10. Darcy velocity in the soil for the U-tube flow problem
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Fig. 11. Sketch of soil excavation by water jet

Table 3. Material Properties Used in the Computation for the Soil
Excavation by Waterjet

Property Symbol Value

True density of soil ~ρs 2,700 kg=m3

Young’s modulus of soil E 150 MPa
Bulk modulus of soil K 125 MPa
Poisson’s ratio of soil ν 0.3
Internal friction angle of soil θ 25°
Cohesion of soil kc 0
Initial volume fraction of soil ϕs0 0.5
Hydraulic conductivity of soil k 0.0005 m=s
Sound speed of soil cs 215 m=s
Dynamic viscosity of the water μ 1.0 × 10−3 Pa · s
Initial true density of the water ~ρf0 1000 kg=m3

Virtual sound speed of water cf 250 m=s
Initial volume fraction of water ϕf0 0.5
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Fig. 12 shows the flow pattern during the water impinging pro-
cess. Two interesting characteristics of the mixture flows are ob-
served. First, the jet flow can be divided into three regions,
i.e., the free jet region, the impingement region, and the wall jet
region. In the free jet region, the jet essentially behaves as if there
were no boundary. In the impingement region, the flow begins to
stagnate and is redirected to flow along the soil surface. In the wall
jet region, the flow behaves as a wall jet along the soil surface. The
soil is eroded by the wall jet flow and soil particles are splashed

together with the water particles. Second, during the excavation
process, particles originally in the tank tend to flow over the tank.
This can be explained by the reason that water is slightly compress-
ible in SPH simulation. Because of the high pressure of the water
jet, the water particles will force soil particles to move together,
leading to the flow over of the water-soil mixture.

Fig. 13 compares numerical results obtained by the present SPH
mixture model with that given by the SPH model of Bui et al.
(2007). Soil surface at some representative times during the initial
stage of the impingement are shown in this figure. It is shown that
although numerical results obtained by both models are qualita-
tively consistent with each other, the SPH mixture model predicts
a wider and shallower excavation hole. This is reasonable, bearing
in mind that only part of the water pressure acts on the soil particles
in the mixture model, as seen in Eq. (12). On the contrary, Bui’s
model, without considering the volume fractions, is in fact a two-
fluid (i.e., pure water and pure soil) model with some interaction
terms. Pure water contains more energy than water partially filled
the same volume space with a fraction. Thus, a deeper and narrower
excavation hole results in Bui’s model.

Because of the high pressure in the impingement region, the
water particles issued from the nozzle will merge into the soil par-
ticles in the tank. This will change the volume fractions of both
water and soil near the excavation hole. With the proposed SPH
mixture model, it is possible to investigate the temporal and spatial
variations of the volume fraction. Fig. 14 shows the volume fraction

A

B C

A Free jet region
B Impinging region
C Wall jet region

Water particles from nozzle
Water particles in mixture
Soil particles in mixture

Fig. 12. Flow pattern of soil excavation by water jet
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Fig. 13. Soil surface at representative times compared with that given by Bui et al. (2007) SPH model
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ϕs of soil at representative times. It is shown that ϕs decreases near
the excavation hole. At the soil surface ϕs reaches its minimum due
to the large water content there. Variation of ϕf is reversed.

For noncohesive saturated soil, the excavation hole is shallow
and wide. Analysis of the soil failure mechanisms is helpful to
understand the formation of the hole. Figs. 15 and 16 show the
variations of soil pressure and accumulated plastic shear strain dur-
ing the excavation process. It is shown that although the high pres-
sure zone is at the impinging region, the plastic deformation is
strongest at the wall jet region. At this region, soil undergoes severe
erosion due to the strong reversed flow. This explains why a shal-
low and wide excavation hole forms in noncohesive saturated soil.

Hydraulic conductivity of soil has strong effects on the excava-
tion. Generally speaking, lower hydraulic conductivity will lead to
larger drag force. As a consequence, the soil particles and water
particles adhere to each other and move together. Conversely,

higher hydraulic conductivity will lead to lower drag force between
the two phases. In this case, water particles can move through soil
particles more easily, leading to stronger erosion of the soil. Fig. 17
shows excavations in soils with different hydraulic conductivities at
t ¼ 0.01 s. It is shown that soil particles with higher hydraulic con-
ductivity are more easily eroded from the soil surface, leading to a
larger excavation hole and stronger spray of particles.

As mentioned earlier, volume fractions play important roles in
mixture dynamics, which can be investigated using the SPH model.
Now the influence of initial water content on soil excavation is dis-
cussed. By varying the initial volume fractions of water or soil,
water content in the mixture can be changed. Two different initial
water contents are investigated, as seen in Fig. 18. It is shown that
water content has great influence on the shape of the excavation
hole. When the mixture contains more water, the excavation hole
exhibits a “U” shape. It shows a “V” shape when the soil content is
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Fig. 14. Spatial and temporal variation of the volume fraction ϕs of soil
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Fig. 15. Soil pressure distribution
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greater. This can be explained by the large resistance that water
particles suffered in dense soil. Here the authors have shown again
the advantages of the proposed SPH model in dealing with mixture
flows. Many other water-soil interaction problems, such as under-
water soil excavation or trenching, can also be explored using this
method. However, these are topics of future research.

Conclusions

In this paper numerical simulation of water-soil interactions
by means of SPH method is presented. In this study, the water-
saturated soil is considered as a two-phase mixture. For each
single phase (water and soil), conservation equations of mass
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Fig. 16. Accumulated plastic shear strain εxyp of soil
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Fig. 17. Effects of hydraulic conductivity k on soil excavation at t ¼ 0.01 s
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Fig. 18. Effects of initial volume fractions on soil excavation at t ¼ 0.01 s
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and momentum are formulated, taking the volume fraction into ac-
count. Interactions between water and soil are considered by the
linear viscous drag force and the pore water pressure. The water
is modeled by a Newtonian slightly-compressible fluid, while
the soil is considered as an elastic-perfectly plastic material. A
Drucker-Prager yield function with associated plastic flow rule
is employed to describe the elastic-plastic behavior of the soil.
The proposed model, including the model by Bui et al. (2008)
as a particular case (i.e., dry soil), has the capability of dealing with
saturated water-soil mixture flows.

Soil excavation by high-velocity water jet is investigated using
the proposed approach. The same problem has been previously in-
vestigated by Bui et al. (2007) and Guo et al. (2013) but without
taking the volume fractions into consideration. The present numeri-
cal simulation shows that initial volume fractions play an important
role in the movements of saturated soil. With this two-phase SPH
model it is possible to investigate the influence of the volume
fractions on the mixture dynamics. In many situations, such as
underwater jet trenching, excavation, or scour, it is necessary to
consider the effects of volume fractions on the mixture dynamics.
The proposed SPH approach provides an efficient tool to deal with
such problems widely occurring in hydraulic engineering and
geomechanics.

Future studies on the conservation properties and numerical ac-
curacy of the proposed model, as well as the role of its parameters
(e.g., artificial viscosity, hydraulic conductivity, etc.), could be con-
sidered. For the water dam breaking, a study on the time evolution
of the system’s total energy and its components (i.e., potential, ki-
netic, and internal) has been done by Colagrossi and Landrini
(2003) to assess the model behavior. The study of the energy evo-
lution for mixture flow is certainly useful when investigating con-
servation properties of the proposed model and therefore could be
performed in the future.

The assumption of a constant hydraulic conductivity allows one
to obtain reasonable results from an engineering point of view, as
shown in this paper. However, theoretically speaking, the hydraulic
conductivity should be influenced by the mechanical deformation
of the soil, thus the improvement of numerical results by varying
hydraulic conductivity could be tested in the future.
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